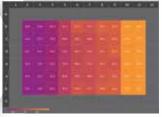
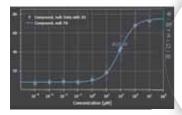


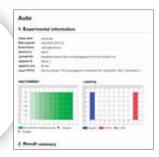
ニコン初のイメージングアナライザー

ECLIPSE Ji


SMART IMAGING SYSTEM



AI により 自動で行われる イメージングや 画像解析


細胞単位から プレート全体まで、 全ての情報を取得

薬剤投与曲線を 自動算出

レポートの 自動作成

AI を搭載した新ワークフロー

プレ撮影

▲ がプレート状態を自動判定 & 露光条件を自動調整

本撮影・解析・表示

最適化された撮影条件で 自動撮影、データ抽出、グラフ化

レポーティング

ワンボタンで データエクスポート

化合物の評価を ワンクリック でレポートまで

13 種類のアッセイで評価業務をサポート

蛍光輝度の測定

細胞ごとの蛍光輝度を取得

形態解析

細胞の大きさや形態

トランスフェクション 効率

遺伝子導入由来の蛍光タンパ クが発現した細胞の割合

細胞毒性の評価

生細胞と死細胞の割合

細胞カウント

明視野画像から細胞をAIで 推定してカウント

核移行の効率

細胞核内外の蛍光輝度比から 核移行したタンパク質を定量

アポトーシス

アポトーシスした細胞の割合

オートファジー

オートファゴソームの蛍光輝度

DNA ダメージ

DNA 損傷マーカーである γH2AX 由来の蛍光輝度

小核試験

染色体異常により形成される 小核を有する細胞の割合

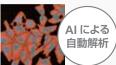
エンドサイトーシス

細胞に取り込まれた蛍光色素 の蛍光量

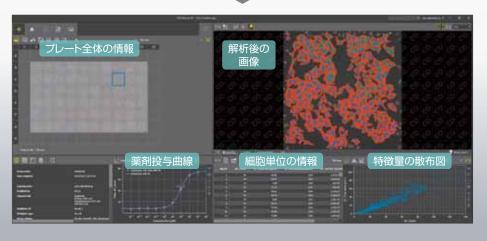
ファゴサイトーシス

免疫細胞に取り込まれた Bioparticles の蛍光量

ミトコンドリア毒性


膜電位依存の蛍光色素で正常 なミトコンドリアのみを標識し て測定

ECLIPSE Ji 解析実行



レポートまで

ワンタッチで

■ FCLIPSE Ii 製品の詳細はこちら

https://www.microscope.healthcare.nikon.com/ja_JP/ 本社 140-0015 東京都品川区西大井 1-6-3 (株)ニコン 大井ウエストビル 3 階

